Enantioselective Synthesis of (+)-Cyclophellitol

Richard H. Schlessinger* and Carl P. Bergstrom

Department of Chemistry, University of Rochester, Rochester, New York 14627

Received November 18, 1994

Cyclophellitol ((+)-1: (1S,2R,3S,4R,5R,6R)-5-(hydroxymethyl)-7-oxabicyclo[4.1.0]heptane-2,3,4-triol) has been isolated from the culture filtration of a mushroom, Phellinus sp.¹ Its structure and absolute configuration have been determined both by X-ray crystallography and total synthesis from L-glucose, respectively.^{1,2} The natural product has attracted considerable subsequent synthetic attention in that it has been shown to be an inactivator of β -glucosidase³ and potentially of use as an inhibitor of human immunodeficiency virus.⁴ Our interest in the fabrication of densely functionalized nonracemic cyclohexane ring systems, via nonracemic Diels-Alder reactions,⁵ prompted us to attempt a synthesis of 1.6

To this end, the nonracemic furan 2 was prepared by deprotonation (KHMDS in THF (0 °C, 4 h)) of the vinylogous urethane lactone (VUL) 4 followed by treatment of the resulting potassium enolate with tertbutyldiphenylsilyl chloride (TBDPSCl, 0 °C, 1 h).⁷ Racemic dimethyl 2,3-pentadienedioate (3, 4 equiv, 1 M THF) was added (-100 °C, Et₂O/CO₂).⁸ After stirring (6 h), the marginally stable [2:2:1]oxabicyclic enamine adduct 5 (91% crude) was isolated by filtration through alumina.⁹ Adduct 5 arises from a double diastereofacially selective reaction in which kinetic resolution of the allenic diester **3** occurs.¹⁰ We felt that **5** contained the requisite seeds of structure and functionality to permit its conversion into the natural product 1 and set out to test this assumption.

Treatment of 5 (2 M HCl, CH₃CN, 0 °C) gave the axial bromo ketone 6 (93%).¹¹ Stereoselective reduction (NaBH₄/ EtOH, -78 °C) of **6** afforded the syn bromohydrin **7** (94%). 7 possesses the correct functionality and stereochemistry at C_1 and C_2 , respectively, as required by the structure 1. We next faced the problem of reforming C_4 and C_5 of 7 to the correct stereochemistry, carbon content, and oxidation state without prematurely disrupting its oxabicyclic ketal structure.

- Atsumi, S.; Umezawa, K.; Iinuma, H.; Naganawa, H.; Nakamura,
 H.; Iitaka, Y.; Takeuchi, T. J. Antibiot. 1990, 43, 49.
 (2) Tatsuta, K.; Niwata, Y.; Umezawa, K.; Toshima, K.; Nakata, M. Tetrahedron Lett. 1990, 31, 1171. Tatsuta, K.; Niwata, Y.; Umezawa, K.; Toshima, K.; Nakata, M. Carbohydr. Res. 1991, 222, 189.
 (3) Akiyama, T.; Ohnari, M.; Shima, H.; Ozaki, S. Synlett 1991, 831.
- Moritz, V.; Vogel, P. Tetrahedron Lett. 1992, 33, 5243. Shing, T. K. M.; Tai, V. W. F. J. Chem. Soc., Chem. Commun. 1993, 995. Sato, K.; Bokura, M.; Moriyama, H.; Igarashi, T. Chem. Lett. 1994, 37. McDe-vitt, R. E.; Fraser-Reid, B. J. Org. Chem. 1994, 59, 3250.
- (4) Atsumi, S.; Iinuma, H.; Nosaka, C.; Umezawa, K. J. Antibiot. 1990, 43, 1579. Withers, S. G.; Umezawa, K. Biochem. Biophys. Res. Commun. 1991, 177, 532.
- (5) Schlessinger, R. H.; Pettus, T. R. R.; Springer, J. P.; Hoogsteen, K. J. Org. Chem. 1994, 59, 3246.
- (6) To date, all of these syntheses commence from sugars except for the work of Vogel which results in racemic 1.
- (7) See ref 5 for the preparation of 4.
 (8) For the preparation of this allene see: Bryson, T. A.; Dolak, T. M. Org. Synth. 1977, 57, 62.
- (9) On prolonged standing or on chromatography on silica gel, 5 suffers either hydrolysis of the enamine residue (minor) or ring opening of the bicyclic ketal (major).
- (10) Optical activity is exhibited by the allenic diester, 3, recovered from this reaction.

Adjusting the stereochemistry of the axial ester residue at C_5 was first addressed. This was best carried out by treatment of 7 (DMAP, 0.2 equiv, THF, 22 °C, 48 h) to give the C_5 equatorial ester 8 (79%). Careful ¹H study of this reaction indicated that the transformation 7 to 8 proceeded through the intermediate 9 and that competing β -elimination of the bridge oxygen did not occur with alacrity under these conditions.¹² Ozonolysis of 8 (O₃, CH₂Cl₂, -78 °C, 4 h; DMS, -78 °C, 1 h, 22 °C, 1 h) afforded the unstable β -keto ester 10 (86%, crude).¹³ Lastly, reduction of 10 (DIBALH, toluene, -78 °C, 30 min, -20 °C, 3.5 h; CH₃OH, 2 M HCl, 0 °C) correctly set the secondary alcohol center at C_4 of 11 (81%).

The stage was now set for cleavage of the oxabicvclic ketal residue of 11 into the cyclohexanone tetrol 12, followed by reduction of the ketonic moiety into its C_6 axial alcohol analogue 13. Admixture of 11 with BF3 Et2O $(CH_2Cl_2, -20 \ ^{\circ}C)$ gave 12 (70%, crude) as a highly polar and water soluble compound. Reduction of 12 under a wide variety of conditions, unfortunately, gave only very low (<30%) yields of 13. Thus, we protected 11 (Bundles' procedure)¹⁴ as its tribenzyl ether 14 (84%). 14 smoothly cleaved with BF₃·Et₂O (CH₂Cl₂, -20 °C) to the tractable cyclohexanone 15 (85%).

(11) Compound 6, and hence compound 5, are formed with greater than 99% ee. This was demonstrated in the following fashion. Nonracemic 6 was dehalogenated (Bu₃SnH, AIBN, THF, 22 °C, 18 h) to give the ketone i.

Racemic i was prepared starting from the diisopropylamine analogue of the VUL 4. Racemic i was chromatographed on a nonracemic HPLC column under conditions which allowed base line separation of racemic i into its racemates. Chiral stationary-phase HPLC analyses were performed with a Varian 3010 pump and LDC spectromonitor using chiralcel OJ columns supplied by J. T. Baker. The spectra were recorded with a LDC UV/vis recording spectrometer. UV-vis (EtOH) λ_s 250 nm; HPLC_{ret} 71.68 (50% i), 78.63 (50% ent i), 98:2 hexane: ethanol, 0.07 mL/min. Under identical conditions, nonracemic i did not exhibit a detectable presence of its racemate.

(12) Prolonged exposure of 8 (1 week) to these reaction conditions did result in β -elimination of the bridge oxygen.

(13) In contrast to 8, compound 10 suffered rapid β -elimination of the bridge oxygen to give a variety of products.

The last significant hurdle remaining in this construction of 1, namely the reduction of 15 into its C₆ axial alcohol analogue 16, was then addressed. Diisobutylaluminum 2,6-di-*tert*-butyl-4-methylphenoxide (DDMPO) (22 °C, toluene) treatment of 15 gave 16 (74%).¹⁵ Epoxide 17 was readily obtained (92%) from 16 (KHMDS, THF, -78 °C, 2 h). Hydrogenolysis of 17 (Pd/C, CH₃OH, H₂, 22 °C, 10 h) afforded synthetic (+)-1 (97%) demonstrated to be identical to that obtained from natural sources by all of the usual criteria.¹⁶

Acknowledgment. Financial support form the NIH and Merck Sharp and Dohme Corp. is gratefully acknowledged. We thank Professor Umezawa for an authentic sample of cyclophellitol.

Supplementary Material Available: General experimental procedures and characterization data are given (9 pages).

JO9419504

⁽¹⁴⁾ Iverson, T.; Bundle, D. R. J. Chem. Soc., Chem. Commun. 1981, 1240. Wessel, H.-P.; Iverson, T.; Bundle, D. R. J. Chem. Soc., Perkin Trans. 1 1985, 2247.

⁽¹⁵⁾ Haubenstock, H. Tetrahedron **1990**, 46, 6633. Brunne, J.; Hoffmann, N.; Scharf, H.-D. Tetrahedron **1994**, 50, 6819.

⁽¹⁶⁾ The synthetic (+)-cyclophellitol was identical to that obtained from natural sources by ¹H-NMR and ¹³C-NMR spectra, IR spectra, optical rotation, and melting point; see ref 1.